Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38664280

RESUMEN

The delivery of CRISPR/Cas ribonucleoprotein (RNP) complexes is gaining attention owing to its high cleavage efficiency and reduced off-target effects. Although RNPs can be delivered into porcine zygotes via electroporation with relatively high efficiency, lipofection-mediated transfection appears to be versatile because of its ease of use, low cost, and adaptation to high-throughput systems. However, this system requires improvements in terms of embryo development and mutation rates. Therefore, this study elucidated the effects of culture methods and reagent combinations on the CRISPR/Cas9 gene editing systems by using three lipofection reagents: Lipofectamine™ CRISPRMAX™ Cas9 Transfection Reagent (CM), Lipofectamine™ 2000 Transfection Reagent (LP), and jetCRISPR™ RNP Transfection Reagent (Jet). Porcine zona pellucida-free zygotes were incubated for 5 h with Cas9, a guide RNA targeting CD163, and the above lipofection reagents. When examining the effect of culture methods using 4-well (multiple embryo culture) and 25-well plates (single embryo culture) on the efficiency of CM-mediated zygote transfection, the culture of embryos in 25-well plates significantly increased the blastocyst formation rate; however, there was no difference in mutation rates between the 4-well and 25-well plates. When assessing the effects of individual or combined reagents on the efficiency of zygote transfection, the mutation rate was significantly lower for individual LP compared to individual CM- and Jet-mediated transfections. Moreover, combinations of lipofection transfection reagents did not significantly increase the mutation rate or mutation efficiency.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38379097

RESUMEN

The generation of genetically engineered pig models that develop pancreas-specific tumors has the potential to advance studies and our understanding of pancreatic cancer in humans. TP53 mutation causes organ-nonspecific cancers, and PDX1-knockout results in the loss of pancreas development. The aim of the present study was to generate a PDX1-knockout pig chimera carrying pancreas complemented by TP53 mutant cells via phytohemagglutinin (PHA)-mediated blastomere aggregation using PDX1 and TP53 mutant blastomeres, as a pig model for developing tumors in the pancreas with high frequency. First, the concentration and exposure time to PHA to achieve efficient blastomere aggregation were optimized. The results showed that using 300 µg/mL PHA for 10 min yielded the highest rates of chimeric blastocyst formation. Genotyping analysis of chimeric blastocysts derived from aggregated embryos using PDX1- and TP53-edited blastomere indicated that approximately 28.6% carried mutations in both target regions, while 14.3-21.4% carried mutations in one target. After the transfer of the chimeric blastocysts into one recipient, the recipient became pregnant with three fetuses. Deep sequencing analysis of the PDX1 and TP53 regions using ear and pancreas samples showed that one fetus carried mutations in both target genes, suggesting that the fetus was a chimera derived from embryo-aggregated PDX1 and TP53 mutant blastomeres. Two out of three fetuses carried only the PDX1 mutation, indicating that the fetuses developed from embryos not carrying TP53-edited blastomeres. The results of the present study could facilitate the further improvement and design of high-frequency developing pancreatic tumor models in pigs.

3.
Reprod Domest Anim ; 59(1): e14520, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38268205

RESUMEN

Sterilization of the culture medium using ultraviolet (UV)-C reduces the potential adverse effects of microorganisms and allows for long-term use. In the present study, we investigated the effects of a medium directly irradiated with UV-C prior to in vitro culture on the development and quality of porcine in vitro-fertilized embryos and the free amino acid composition of the culture media. The culture media (porcine zygote medium [PZM-5] and porcine blastocyst medium [PBM]) were irradiated with UV-C at 228 and 260 nm for 1 and 3 days, respectively. Next, the culture media were irradiated with UV-C at 228 nm for 3, 7, or 14 days. After in vitro fertilization, the embryos were cultured in the UV-C-irradiated media for 7 days. Free amino acid levels in culture media irradiated with 228 and 260 nm UV-C for 3 days were analysed. The blastocyst formation rate of embryos cultured in media irradiated with 260 nm UV-C for 3 days was significantly lower than that of embryos cultured in non-irradiated control media. However, 228 nm UV-C irradiation for up to 14 days did not affect blastocyst formation rates and quality in the resulting blastocysts. Moreover, 260 nm UV-C irradiation significantly increased the taurine concentration in both culture media and decreased methionine concentration in the PBM. In conclusion, UV-C irradiation at 228 nm before in vitro culture had no detrimental effects on embryonic development. However, 260 nm UV-C irradiation decreased embryo development and altered the composition of free amino acids in the medium.


Asunto(s)
Aminoácidos , Desarrollo Embrionario , Animales , Femenino , Embarazo , Porcinos , Cigoto , Fertilización In Vitro/veterinaria , Medios de Cultivo
4.
Anim Sci J ; 94(1): e13878, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818780

RESUMEN

The transfection efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas ribonucleoprotein complexes was compared using three nonviral vector transfection reagents: nonliposomal polymeric (TransIT-X2), lipid nanoparticle delivery (CRISPRMAX), and peptide (ProteoCarry) systems. Porcine zona pellucida-free zygotes and embryos were incubated for 5 h with CRISPR-associated protein 9 (Cas9), guide RNA (gRNA) targeting GGTA1, and one of the reagents. In Experiment 1, optimization of Cas9 protein to gRNA molar ratios of 1:2, 2:2, and 4:2, along with single or double doses of reagents, was performed on zygotes at 10 h post-in vitro fertilization. In Experiment 2, optimization of timing was performed at 10 or 29 h post-in vitro fertilization, using optimal molar ratios and reagent doses. Blastocyst formation, mutation rates, and mutation efficiency were measured in each experiment. For each reagent, a 4:2 Cas9:gRNA molar ratio and addition of a double reagent dose exhibited a higher mutation rate; however, blastocyst rate tended to decrease compared with that of control. Moreover, the optimal transfection time varied depending on the reagent, and the proportions of blastocysts carrying mutations were <34%. In conclusion, the above three transfectants allowed gene editing of porcine zygotes and embryos; however, this newly established chemistry-based technology needs further improvement, especially regarding editing efficiency and embryo development.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Porcinos/genética , Animales , Edición Génica/veterinaria , Proteína 9 Asociada a CRISPR/genética , Cigoto , Desarrollo Embrionario
5.
Anim Sci J ; 94(1): e13842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37218074

RESUMEN

Genetic mosaicism is considered one of the main limitations of the electroporation method used to transfer CRISPR-Cas9/guide RNA (gRNA) into porcine zygotes. We hypothesized that fertilization of oocytes with sperm from gene-deficient boars, in combination with electroporation (EP) to target the same region of the gene in subsequent zygotes, would increase the gene modification efficiency. As myostatin (MSTN) and α1,3-galactosyltransferase (GGTA1) have beneficial effects on agricultural production and xenotransplantation, respectively, we used these two genes to test our hypothesis. Spermatozoa from gene-knockout boars were used for oocyte fertilization in combination with EP to transfer gRNAs targeting the same gene region to zygotes. No significant differences in the rates of cleavage and blastocyst formation as well as in the mutation rates of blastocysts were observed between the wild-type and gene-deficient spermatozoa groups, irrespective of the targeted gene. In conclusion, the combination of fertilization with gene-deficient spermatozoa and gene editing of the same targeted gene region using EP had no beneficial effects on embryo genetic modification, indicating that EP alone is a sufficient tool for genome modification.


Asunto(s)
Edición Génica , Cigoto , Masculino , Animales , Porcinos , Edición Génica/veterinaria , Sistemas CRISPR-Cas , Semen , Electroporación/veterinaria , ARN Guía de Sistemas CRISPR-Cas
6.
Mol Biol Rep ; 50(6): 5049-5057, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37101010

RESUMEN

BACKGROUND: Pigs are excellent large animal models with several similarities to humans. They provide valuable insights into biomedical research that are otherwise difficult to obtain from rodent models. However, even if miniature pig strains are used, their large stature compared with other experimental animals requires a specific maintenance facility which greatly limits their usage as animal models. Deficiency of growth hormone receptor (GHR) function causes small stature phenotypes. The establishment of miniature pig strains via GHR modification will enhance their usage as animal models. Microminipig is an incredibly small miniature pig strain developed in Japan. In this study, we generated a GHR mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes derived from domestic porcine oocytes and microminipig spermatozoa. METHODS AND RESULTS: First, we optimized the efficiency of five guide RNAs (gRNAs) designed to target GHR in zygotes. Embryos that had been electroporated with the optimized gRNAs and Cas9 were then transferred into recipient gilts. After embryo transfer, 10 piglets were delivered, and one carried a biallelic mutation in the GHR target region. The GHR biallelic mutant showed a remarkable growth-retardation phenotype. Furthermore, we obtained F1 pigs derived from the mating of GHR biallelic mutant with wild-type microminipig, and GHR biallelic mutant F2 pigs through sib-mating of F1 pigs. CONCLUSIONS: We have successfully demonstrated the generation of biallelic GHR-mutant small-stature pigs. Backcrossing of GHR-deficient pig with microminipig will establish the smallest pig strain which can contribute significantly to the field of biomedical research.


Asunto(s)
Sistemas CRISPR-Cas , Cigoto , Masculino , Humanos , Porcinos/genética , Animales , Femenino , Sistemas CRISPR-Cas/genética , Receptores de Somatotropina/genética , Porcinos Enanos , Oocitos
7.
Reprod Domest Anim ; 58(6): 882-887, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37081592

RESUMEN

It is important to prevent microbial contamination during liquid preservation of semen in pigs. We examined the effects of curcumin supplementation on the quality of porcine spermatozoa irradiated with ultraviolet-C (UV-C) at 228 nm. UV-C is used to disinfect gases and solid surfaces. In the first experiment, porcine semen was preserved with 0, 10, 25, 50 or 100 µM curcumin under UV-C irradiation at 228 nm for 7 days at 15°C. The irradiation did not affect the motility and viability of preserved spermatozoa but decreased the percentage of plasma membrane integrity of spermatozoa. Curcumin supplementation at 25 µM significantly improved the plasma membrane and acrosome integrity of irradiated spermatozoa compared with spermatozoa preserved without curcumin (p < .05). In the second experiment, semen was preserved with or without 25 µM curcumin with UV-C irradiation at 228 or 260 nm for 3 days at 15°C. Curcumin supplementation increased the percentages of total motility, sperm viability and plasma membrane integrity of preserved spermatozoa at both irradiation wavelengths (p < .05). All quality parameters of 260 nm irradiated spermatozoa decreased compared to those of the other groups, irrespective of curcumin supplementation. The collective findings indicate that porcine spermatozoa can retain their viability even after continuous long-duration irradiation with 228 nm UV-C. Curcumin supplementation improves the quality of UV-C irradiated spermatozoa during semen preservation.


Asunto(s)
Curcumina , Preservación de Semen , Porcinos , Masculino , Animales , Semen , Curcumina/farmacología , Espermatozoides , Acrosoma , Análisis de Semen/veterinaria , Preservación de Semen/veterinaria , Suplementos Dietéticos , Motilidad Espermática
8.
Front Cell Dev Biol ; 11: 884340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36711037

RESUMEN

Just one amino acid at the carboxy-terminus of the B chain distinguishes human insulin from porcine insulin. By introducing a precise point mutation into the porcine insulin (INS) gene, we were able to generate genetically modified pigs that secreted human insulin; these pigs may be suitable donors for islet xenotransplantation. The electroporation of the CRISPR/Cas9 gene-editing system into zygotes is frequently used to establish genetically modified rodents, as it requires less time and no micromanipulation. However, electroporation has not been used to generate point-mutated pigs yet. In the present study, we introduced a point mutation into porcine zygotes via electroporation using the CRISPR/Cas9 system to generate INS point-mutated pigs as suitable islet donors. We first optimized the efficiency of introducing point mutations by evaluating the effect of Scr7 and the homology arm length of ssODN on improving homology-directed repair-mediated gene modification. Subsequently, we prepared electroporated zygotes under optimized conditions and transferred them to recipient gilts. Two recipients became pregnant and delivered five piglets. Three of the five piglets carried only the biallelic frame-shift mutation in the INS gene, whereas the other two successfully carried the desired point mutation. One of the two pigs mated with a WT boar, and this desired point mutation was successfully inherited in the next F1 generation. In conclusion, we successfully established genetically engineered pigs with the desired point mutation via electroporation-mediated introduction of the CRISPR/Cas9 system into zygotes, thereby avoiding the time-consuming and complicated micromanipulation method.

9.
Theriogenology ; 197: 252-258, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525864

RESUMEN

It is important to prevent contamination inside the incubator as a method of preventing microbial infections during the embryo culture. In the present study, we examined the effects of ultraviolet-C (UV-C) irradiation, used for microorganism inactivation, on embryo development and the growth of bacteria, including Escherichia coli and Staphylococcus aureus, and the fungus Cladosporium cladosporioides. In the embryo irradiation experiment, we examined the effects of the plastic lid of the culture dish, irradiation distances (10, 20, and 25 cm), and different irradiation wavelengths (228 and 260 nm) during embryo culture for 7 days on the development and quality of porcine in vitro-fertilized embryos. None of the embryos cultured in dishes without plastic lids developed into blastocysts after irradiation with 228 nm UV-C. When porcine embryos were cultured in a culture dish with lids, the 228 nm UV-C irradiation decreased blastocyst formation rates of the embryos but not their quality, irrespective of the UV-C irradiation distance. Moreover, irradiation with 260 nm UV-C, even with plastic lids, had more detrimental effects on embryo development than irradiation with 228 nm UV-C. Investigation of the inactivating effects of UV-C irradiation at 228 nm and 260 nm on the growth of the bacteria and fungus showed that 260 nm UV-C reduced the viability to a greater extent than 228 nm UV-C. Moreover, the disinfection efficacy for the bacteria increased when the irradiation duration increased and the distance decreased. In conclusion, porcine embryos can develop into blastocysts without loss of quality even after continuous long-duration irradiation (7 days) with 228 nm UV-C, which can inactivate the growth of bacteria and the tested fungus; however, the development rate of the embryo is reduced.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Animales , Porcinos , Desarrollo Embrionario/fisiología , Blastocisto/fisiología , Embrión de Mamíferos , Fertilización In Vitro/veterinaria , Escherichia coli , Bacterias , Rayos Ultravioleta
10.
Vet World ; 15(9): 2210-2216, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36341066

RESUMEN

Background and Aim: Mosaicism - the presence of both wild-type and mutant alleles - is a serious problem for zygotic gene modification through gene editing using the Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR/Cas9) system. Different delivery methods, such as microinjection (MI), electroporation (EP), and transfection (TF), can be used to transfer CRISPR/Cas9 components into porcine zygotes. This study aimed to develop a method that combines MI, EP, and TF to improve mutation efficiency mediated through the CRISPR/Cas9 system for a triple-gene knockout in pigs. Materials and Methods: The study consisted of three groups: The MI group with three simultaneously microinjected guide RNAs (gRNAs) targeting α-1,3-galactosyltransferase (GGTA1), cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and ß-1,4-N-acetyl-galactosaminyltransferase 2 (B4GALNT2); the MI + EP group with two gRNAs targeting GGTA1 and B4GALNT2 genes delivered into zygotes through MI, followed by EP of gRNA targeting the CMAH 1 h later; and the MI + EP + TF group with MI of gRNA targeting GGTA1 gene into zygotes, followed by EP of gRNA targeting CMAH 1 h later, and then TF of gRNA targeting the B4GALNT2 gene into zona-free zygotes after another hour. Results: The rate of blastocysts carrying mutations in one or two gene(s) was significantly higher in the MI + EP + TF group than in the MI group. However, the blastocyst formation rate of zygotes in the MI + EP + TF group was lower than that of the zygotes in the other treatment groups. Conclusion: The combination of CRISPR/Cas9 delivery methods may improve the mutation efficiency of triple-gene edited porcine blastocysts.

11.
Arch Anim Breed ; 65(3): 353-356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267479

RESUMEN

This study aimed to investigate the relationship between increases in the luteinizing hormone (LH) profiles in the serum and vaginal mucus of cows induced by gonadotropin-releasing hormone (GnRH). Samples for LH determination were collected from Japanese Black beef cows during estrus, which was induced with a controlled internal progesterone-releasing device and the administration of cloprostenol immediately before GnRH administration and every 30 min from the start of GnRH administration until 6.5 h. The peak serum LH concentration was clearly identified at 2.5 h post-GnRH administration, with serum concentrations returning to near-pre-GnRH-administration values after 6.5 h, whereas the peak vaginal mucus LH concentration was identified 4.5 h after GnRH administration. These results indicate that the LH secretion peak in vaginal mucus appeared about 2 h after peak LH secretion in the serum.

12.
Reprod Domest Anim ; 57(10): 1136-1142, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35699358

RESUMEN

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9) technology is growing rapidly and has been greatly influencing the efficiency and effectiveness of genetic modifications in different applications. One aspect of research gaining importance in the development of the CRISPR/Cas9 system is the introduction of CRISPR materials into target organisms. Although we previously demonstrated the efficacy of electroporation- and lipofection-mediated CRISPR/Cas9 gene disruption in porcine zygotes, we still believe that the efficiency of this system could be improved by combining these two methods. The present study was thus conducted to clarify the effects of a combination of electroporation and lipofection for delivering CRISPR/Cas9 components into zona pellucida (ZP)-intact and -free zygotes. The results revealed that electroporation alone significantly increased the biallelic mutation rates in the resulting blastocysts compared to lipofection alone, irrespective of the presence of ZP. None of ZP-intact zygotes treated by lipofectamine alone had any mutations, suggesting that removal of the ZP is necessary for enabling CRISPR/Cas9-based genome editing via lipofection treatment in the zygotes. Additional lipofectamine treatment after electroporation did not improve the rates of total and biallelic mutations in the resulting blastocysts derived from either ZP-intact or -free zygotes.


Asunto(s)
Proteína 9 Asociada a CRISPR , Edición Génica , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Electroporación/métodos , Electroporación/veterinaria , Edición Génica/métodos , Edición Génica/veterinaria , Porcinos , Transfección/veterinaria , Cigoto
13.
Anim Sci J ; 93(1): e13711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35373427

RESUMEN

We aimed to develop a simple method for the short-term preservation of in vitro-produced porcine zygotes at 25°C for up to 2 days. Firstly, we evaluated the efficiency of three storage solutions to preserve porcine zygotes at 25°C for 24 h. Two of these were commercially available defined media for cell storage (Cell-W and Cell-S), and the third was fetal bovine serum (FBS). Thereafter, we examined the effects of storing the zygotes in the Cell-W solution for 24-72 h at 25°C. The Cell-W solution was the most efficient for 24 h storage of porcine zygotes at 25°C, with no apparent effects on blastocyst quality. However, short-term storage of porcine zygotes for 24 h reduced the blastocyst formation rate compared with the fresh control group. As storage duration increased from 24 to 48 or 72 h, blastocyst formation rates were significantly decreased from 11.3% to 4.4% and 0%, respectively. In conclusion, during zygote storage, the developmental competence to the blastocyst stage decreased with time. Storage of zygotes in chemically defined media did not affect blastocyst quality, but the storage in 100% serum had an adverse effect on developing embryos causing apoptosis.


Asunto(s)
Fertilización In Vitro , Cigoto , Animales , Blastocisto , Medios de Cultivo/farmacología , Fertilización In Vitro/veterinaria , Porcinos , Temperatura
14.
Vet World ; 15(2): 496-501, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35400948

RESUMEN

Background and Aim: We previously developed the gene-editing by electroporation (EP) of Cas9 protein method, in which the CRISPR/Cas9 system was introduced into porcine in vitro fertilized (IVF) zygotes through EP to disrupt a target gene. This method should be further developed, and a combination of EP and MI methods should be evaluated in pigs. This study aimed to determine that a combination of microinjection (MI) and EP of CRISPR/Cas9 system could increase the rates of biallelic mutation for triple-gene knockout in porcine blastocysts. We targeted the pancreatic and duodenal homeobox1 (PDX1) gene using cytoplasmic MI 1 h before or after EP, which was used to edit alpha-1,3-galactosyltransferase (GGTA1) and cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes in porcine zygotes. Materials and Methods: We introduced guide RNAs targeting PDX1, GGTA1, and CMAH with the Cas9 protein into IVF zygotes (one-cell stage) through EP 10 h after the start of IVF (IVF; EP group) or in combination with MI (1 h before, MI-EP group, or after EP treatment EP-MI group) and evaluated the blastocyst formation rate and efficiency of target mutations in the resulting blastocysts. Results: Our results revealed a significant reduction in the rate of blastocyst formation in the two groups that underwent MI before and after EP (MI-EP and EP-MI group), compared with that in the groups treated with EP alone (EP group) (p=0.0224 and p<0.0001, respectively) and control (p=0.0029 and p<0.0001, respectively). There was no significant difference in the total mutation rates among the treatment groups in the resulting blastocysts. As an only positive effect of additional MI treatment, the rate of blastocysts carrying biallelic mutations in at least one target gene was higher in the MI-EP group than in the EP group. However, there was no difference in the rates of embryos carrying biallelic mutations in more than 2 target genes. Conclusion: These results indicate that although a combination of MI and EP does not improve the mutation efficiency or biallelic mutation for triple-gene knockout, MI treatment before EP is better to reduce mortality in porcine zygotic gene editing through a combination of MI and EP.

15.
Vet Anim Sci ; 16: 100241, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35265771

RESUMEN

Mosaicism, including alleles comprising both wild-type and mutant, is a serious problem for gene modification by gene editing using electroporation. One-step generation of F0 pigs with completely desired gene modifications saves cost and time, but the major obstacles have been mosaic mutations. We hypothesized that the timing of electroporation prior to in vitro fertilization (IVF) can increase the rates of biallelic mutation for multiple gene knockout as the permeability of mature oocytes is greater than that of zygotes. Hence, we determined whether the timing of electroporation during in vitro maturation (IVM) culture enhances triple gene editing in the resulting blastocysts. Three gRNAs targeting KDR, PDX1, and SALL1 were simultaneously introduced into the oocytes that had been incubated for 40, 42, and 44 h from the start of the IVM culture. Electroporation with three gRNAs at 40 h and 42 h during IVM culture decreased the blastocyst formation rates and did not improve the mutation rates and target number of biallelic mutations in the resulting blastocysts. The blastocyst formation rate, mutation rates, and target numbers in the resulting blastocysts from oocytes treated by electroporation at 44 h of IVM culture were similar to those of control zygotes electroporated at 13 h after the initiation of IVF. In conclusion, multiple gene editing efficiency in the resulting blastocysts was comparable between oocytes electroporated before and after the fertilization, indicating that oocytes with completed maturation time may allow better functioning of materials accepting gene editing application.

16.
Reprod Domest Anim ; 57(5): 556-563, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35137478

RESUMEN

This study developed an efficient method for liquid storage of in vitro-derived porcine blastocysts at ambient temperature for 24 hr. We evaluated the effects of new chemically defined media (cell wash and preservation solution, Cellstor® -W [Cell-W] and cell suspension and preservation solution, Cellstor® -S [Cell-S]) for short-term storage. In the first experiment, in vitro-derived blastocyst were stored at 25ºC for 24 hr in Cell-W solution, Cell-S solution and pig embryo culture (PBM) medium. There were no differences in the rates of survival and development of stored blastocysts between the Cell-S and Cell-W solutions, but the total cell number of embryos that survived after storage in Cell-S solution was significantly higher (p < .05) than that in the Cell-W solution. In the second experiment, Cell-S solution was used to store the in vitro-derived blastocysts at 20°C, 25°C and 30°C. Storage at 20°C resulted in a significant decrease in the rates of survival and development of stored blastocysts compared to storage at 25°C or 30°C. No differences in survival and development rates were observed between storage at 25°C and 30°C, but the damage to the embryo quality after storage and culture was significantly lower at 25°C than at 30°C. In the third experiment, Cell-S solution was supplemented with ß-mercaptoethanol and curcumin, either alone or in combination, as antioxidant agents. Although the supplementation with curcumin did not improve survival, it significantly increased the development rate of stored blastocysts compared with the control blastocysts stored without antioxidants. In conclusion, when porcine blastocysts were stored at 25°C for 24 hr, a Cell-S solution may be effective for maintaining the survival and development of in vitro embryos.


Asunto(s)
Curcumina , Animales , Blastocisto , Medios de Cultivo/farmacología , Curcumina/farmacología , Embrión de Mamíferos , Fertilización In Vitro/veterinaria , Porcinos , Temperatura
17.
Reprod Domest Anim ; 57(3): 314-320, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34862995

RESUMEN

The oocyte maturation process requires a high supply of energy, which generates reactive oxygen species (ROS), adversely affecting oocyte and embryo development. Balancing ROS by antioxidant supplementation is essential for maintaining oocyte maturation and embryonic quality in vitro. This study aimed to evaluate the impact of four antioxidants: ß-mercaptoethanol (ß-ME), chlorogenic acid (CGA), curcumin and sericin, when applied individually or in combinations, during oocyte maturation on development of porcine oocytes. Cumulus-oocyte complexes were collected, cultured in maturation medium supplemented with antioxidants for 44 hr and subsequently subjected to in vitro fertilization (IVF) and culture for 7 days. Combining all four (ß-ME + CGA + curcumin + sericin) or three (ß-ME + CGA + curcumin) antioxidants increased blastocyst formation rates. However, sericin supplementation alone, or in combination with ß-ME or CGA, failed to improve blastocyst formation rates. The total cell numbers of blastocysts from the group supplemented with three antioxidants (ß-ME + CGA + curcumin) were significantly higher than those from the other groups, except for the curcumin-supplement group. There were no differences in the maturation rates and proportions of oocytes with fragmented DNA between the antioxidant-supplemented and the non-supplemented control groups. In conclusion, supplementation with three antioxidants (ß-ME + CGA + curcumin) during the maturation culture enhanced blastocyst formation and improved blastocyst quality.


Asunto(s)
Antioxidantes , Técnicas de Maduración In Vitro de los Oocitos , Animales , Antioxidantes/farmacología , Blastocisto , Suplementos Dietéticos , Desarrollo Embrionario , Fertilización In Vitro/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos , Porcinos
18.
Vet Med Sci ; 8(1): 164-169, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34674375

RESUMEN

BACKGROUND: Increasing the permeability of the zona pellucida (ZP) of oocytes before CRISPR/Cas9 electroporation may improve the efficiency of gene editing; however, the effects of this approach on subsequent developmental processes are unclear. In this study, the effects of ZP treatment before electroporation on embryonic development and gene editing in porcine embryos were evaluated. METHODS: The ZP of zygotes was weakened or removed by exposure to 0.5% actinase E, followed by electroporation of the Cas9 protein with guide RNA targeting GGTA1. RESULTS: The blastocyst formation rate of ZP-free zygotes after electroporation was significantly lower (p < 0.05) than that of ZP-intact zygotes. The mutation rate in blastocysts from ZP-weakened zygotes was similar to that in ZP-intact zygotes, whereas ZP removal increased the mutation rate. The mutation efficiency in blastocysts from electroporated zygotes did not differ among ZP treatment groups. CONCLUSIONS: Our results indicate that weakening the ZP does not affect the developmental competence, mutation rate, or mutation efficiency of electroporated zygotes, whereas ZP removal has a detrimental effect on embryonic development but may increase the mutation rate.


Asunto(s)
Edición Génica , Cigoto , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Femenino , Edición Génica/métodos , Edición Génica/veterinaria , Embarazo , Porcinos , Zona Pelúcida/metabolismo , Cigoto/metabolismo
19.
Sci Rep ; 11(1): 23806, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903813

RESUMEN

The specificity and efficiency of CRISPR/Cas9 gene-editing systems are determined by several factors, including the mode of delivery, when applied to mammalian embryos. Given the limited time window for delivery, faster and more reliable methods to introduce Cas9-gRNA ribonucleoprotein complexes (RNPs) into target embryos are needed. In pigs, somatic cell nuclear transfer using gene-modified somatic cells and the direct introduction of gene editors into the cytoplasm of zygotes/embryos by microinjection or electroporation have been used to generate gene-edited embryos; however, these strategies require expensive equipment and sophisticated techniques. In this study, we developed a novel lipofection-mediated RNP transfection technique that does not require specialized equipment for the generation of gene-edited pigs and produced no detectable off-target events. In particular, we determined the concentration of lipofection reagent for efficient RNP delivery into embryos and successfully generated MSTN gene-edited pigs (with mutations in 7 of 9 piglets) after blastocyst transfer to a recipient gilt. This newly established lipofection-based technique is still in its early stages and requires improvements, particularly in terms of editing efficiency. Nonetheless, this practical method for rapid and large-scale lipofection-mediated gene editing in pigs has important agricultural and biomedical applications.


Asunto(s)
Edición Génica/métodos , Mutación , Porcinos/genética , Transfección/métodos , Animales , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Sistemas CRISPR-Cas , Edición Génica/veterinaria , Lípidos/farmacología , Miostatina/genética , Miostatina/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transfección/veterinaria
20.
BMC Res Notes ; 14(1): 389, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627381

RESUMEN

OBJECTIVE: Lipofection-mediated introduction of the CRISPR/Cas9 system in porcine zygotes provides a simple method for gene editing, without requiring micromanipulation. However, the gene editing efficiency is inadequate. The aim of this study was to improve the lipofection-mediated gene editing efficiency by optimizing the timing and duration of lipofection. RESULTS: Zona pellucida (ZP)-free zygotes collected at 5, 10, and 15 h from the start of in vitro fertilization (IVF) were incubated with lipofection reagent, guide RNA (gRNA) targeting GGTA1, and Cas9 for 5 h. Lipofection of zygotes collected at 10 and 15 h from the start of IVF yielded mutant blastocysts. Next, ZP-free zygotes collected at 10 h from the start of IVF were incubated with lipofection reagent, gRNA, and Cas9 for 2.5, 5, 10, or 20 h. The blastocyst formation rate of zygotes treated for 20 h was significantly lower (p < 0.05) than those of the other groups, and no mutant blastocysts were obtained. Moreover, the mutation rates of the resulting blastocysts decreased as the incubation time increased. In conclusion, a lipofection-mediated gene editing system using the CRISPR/Cas9 system in ZP-zygotes is feasible; however, further improvements in the gene editing efficiency are required.


Asunto(s)
Edición Génica , Cigoto , Animales , Blastocisto , Sistemas CRISPR-Cas/genética , ARN Guía de Kinetoplastida , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...